Paleogenomics Documentation
Release 0.1.0

Claudio Ottoni

Nov 10, 2020

Contents

1 Contents 3
.1 Listof Tools o e 3
1.2 Quality filtering of reads 4
1.3 Metagenomic screening of shotgundata oL ool 6
1.4 Alignment of reads to a reference genomeol e 15
1.5 Variant calling and visualization L. e e e e e e 24
1.6 Filtering, annotating and combining SNPs oo 26
1.7 DO-IT-YOURSELF e 29
1.8 RSESSION o o o e e e e e e e e e e e 29

Paleogenomics Documentation, Release 0.1.0

Welcome to the 3rd edition of the “Physalia Paleogenomics” course, online version 16-20 November 2020.

Contents 1

Paleogenomics Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Contents

1.1 List of Tools

Data preprocessing
* AdapterRemoval: https://github.com/MikkelSchubert/adapterremoval
Metagenomics screening of shotgun data
* kraken: https://ccb.jhu.edu/software/kraken/
e kraken?2: https://ccb.jhu.edu/software/kraken2/index.shtml
* krona: https://github.com/marbl/Krona/wiki
Reads alignment and variants calling
* bwa: https://github.com/lh3/bwa
» gatk: https://software.broadinstitute.org/gatk/
e samtools: http://www.htslib.org/
* beftools: http://www.htslib.org/
Filtering and manipulating bam files
e picard: https://broadinstitute.github.io/picard/
e dedup: https://github.com/apeltzer/DeDup
aDNA deamination detection and rescalinghttps://github.com/Amine-Namouchi/snpToolkit
* mapDamage: https://ginolhac.github.io/mapDamage/
Creating summary reports
* fastqc: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
* Qualimap: http://qualimap.bioinfo.cipf.es/

* BAMStats: http://bamstats.sourceforge.net

https://github.com/MikkelSchubert/adapterremoval
https://ccb.jhu.edu/software/kraken/
https://ccb.jhu.edu/software/kraken2/index.shtml
https://github.com/marbl/Krona/wiki
https://github.com/lh3/bwa
https://software.broadinstitute.org/gatk/
http://www.htslib.org/
http://www.htslib.org/
https://broadinstitute.github.io/picard/
https://github.com/apeltzer/DeDup
https://ginolhac.github.io/mapDamage/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://qualimap.bioinfo.cipf.es/
http://bamstats.sourceforge.net

Paleogenomics Documentation, Release 0.1.0

e MultiQC: http://multigc.info/
Integrative genomic viewer

* IGV: http://software.broadinstitute.org/software/igv/
SNPs annotation and post-processing

e snpToolkit: https://github.com/Amine-Namouchi/snpToolkit
Phylogeny

¢ IQ-TREE: http://www.iqtree.org/

* Figtree: http://tree.bio.ed.ac.uk/software/figtree

1.2 Quality filtering of reads

1.2.1 Reads quality control

The first step is the quality-control of the reads generated by the sequencing platform in the fastq file format. To
do that, we will use FastQC, which provides a modular set of analyses that you can use to have a first impression of
whether your data has any problems of which you should be aware before doing any further analysis. To run FastQC

type the following command:

’fastqc filename.fastqg.gz

To analyze multiple fastg files you can run FastQC as follows:

’fastqc ~.fastqg.gz

At the end of the analysis, FastQC generates for each input file a summary report, like in the screenshot below:

Chapter 1. Contents

http://multiqc.info/
http://software.broadinstitute.org/software/igv/
https://github.com/Amine-Namouchi/snpToolkit
http://www.iqtree.org/
http://tree.bio.ed.ac.uk/software/figtree
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Paleogenomics Documentation, Release 0.1.0

@FastQC Report

Summary

@ Basic Statistics

@ Per base sequence quality
@ Per tile sequence quality
@Mm@WM
Per base sequence content
Per sequence GC content
@ Per base N content

@@uence Length Distribution

@ Sequence Duplication Levels
Overrepresented sequences

Q@pter Content

@ Kmer Content

@Per base sequence quality

40
38
36
34
32
30
28
26
24
22
20
18
16
14
12
10

Quality scores across all bases (Sanger / lllumina 1.9 encoding)

o N & oo ©

1234567 89 15-19 30-34 45-49 60-64 75-79 90-94 105-109 125-129 145-149
Position in read {(bp)

Note:

* You can download the reports of FastQC (and any other file) in your laptop with the command scp (Secure
Copy), which allows files to be copied to, from, or between different hosts. It uses ssh for data transfer and
provides the same authentication and same level of security as ssh. For example, to copy from a remote host
(our server) to your computer:

’scp username@remotehost:/full_path_to_file /some/local/directory

* To copy a folder you need to call the option —r

’scp -r username@remotehost:/full_path_to_file /some/local/directory

* If you are using a pem file to connect to the server, you have to use in order to download the files:

—directory

scp -i filename.pem -r username@remotehost:/full_path_to_file /some/local/

1.2.2 Reads quality filtering

Reads filtering is a crucial step as it will affect all downstream analyses. One of the important things to do is to trim
the adapters that were used during the preparation of the genomic libraries. For this step we will use the program
AdapterRemoval, which performs adapter trimming of sequencing reads and subsequent merging (collapse) of paired-
end reads with negative insert sizes (an overlap between two sequencing reads derived from a single DNA fragment)
into a single collapsed read. Here we have single-end reads, so we are going to just trim the adapters:

1.2. Quality filtering of reads

https://github.com/MikkelSchubert/adapterremoval

Paleogenomics Documentation, Release 0.1.0

AdapterRemoval —-filel filename.fastg.gz —-basename filename --minlength 30 —-trimns -
——trimqualities --gzip

Here some of the options of AdapterRemoval:

Option Function
-filel string | Forward reads input file(s) in fastq(.gz) file format. Required option (single-end reads).
-file2 string | Reverse reads input file(s) in fastq(.gz) file format.
—basename | Default prefix for all output files for which no filename was explicitly set [current: your_output]
string
—adapterl Adapter sequence expected to be found in mate 1 reads [current: AGATCGGAAGAGCA-
sequence CACGTCTGAACTCCAGTCACNNNNNNATCTCGTATGCCGTCTTCTGCTTG]
—adapter2 Adapter sequence expected to be found in mate 2 reads [current: AGATCGGAAGAGCGTCGTG-
sequence TAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT]
—trimns If set, trim ambiguous bases (N) at 5°/3’ termini [current: off]
—trimquali- | If set, trim bases at 5°/3’ termini with quality scores <= to —minquality value [current: off]
ties
—minqual- PHRED inclusive minimum values; see —trimqualities for details [current: 2]
ity integer
—minlength | Reads shorter than this length are discarded following trimming [current: 15].
integer
—collapse When set, paired ended read alignments of —-minalignmentlength or more bases are combined into
a single consensus sequence, representing the complete insert
—minalign- | If —collapse is set, paired reads must overlap at least this number of bases to be collapsed, and
mentlength | single-ended reads must overlap at least this number of bases with the adapter to be considered
integer complete template molecules [current: 11].
Note:

* Here we are using a Single-End library, for paired-end libraries the command to clip the adapter and merge the
read pairs is:

AdapterRemoval —--filel filename_R1l.fastq ——file2 filename_R2.fastqg ——-basename
—~filename —-minlength 30 ——trimns ——-trimqualities --collapse --gzip

* Several tools can be used for reads pre-processing and filtering, for example: ClipAndMerge, leeHom, Atropos,

fastp.

After reads filtering open your adapter-trimmed fastq file again in FastQC and see the differences before (the two
original paired-end reads files) and after (the collapsed reads file) adapter trimming.

1.3 Metagenomic screening of shotgun data

1.3.1 Kraken

In this hands-on session we will use Kraken to screen the metagenomic content of a DNA extract after shotgun
sequencing. A Kraken database is a directory containing at least 4 files:

Chapter 1. Contents

https://github.com/apeltzer/ClipAndMerge
https://github.com/grenaud/leeHom
https://github.com/jdidion/atropos
https://github.com/OpenGene/fastp
http://ccb.jhu.edu/software/kraken/

Paleogenomics Documentation, Release 0.1.0

database.kdb: Contains the k-mer to taxon mappings
* database.idx: Contains minimizer offset locations in database.kdb
* taxonomy/nodes.dmp: Taxonomy tree structure + ranks

¢ taxonomy/names.dmp: Taxonomy names

Minikraken

We will first use a pre-built 8 GB Kraken database, called Minikraken, constructed from complete dusted bacterial,
archaeal, and viral genomes in RefSeq (as of October 2017). You can download the pre-built Minikraken database
from the website with wget, and extract the archive content with tar:

wget https://ccb.jhu.edu/software/kraken/dl/minikraken_20171101_8GB_dustmasked.tgz
tar —-xvzf minikraken_20171101_8GB_dustmasked.tgz

Then, we can run the taxonomic assignation of the reads in our sample with the kraken command

kraken --db minikraken_20171101_8GB_dustmasked —-—-fastg-input filename.gz --gzip-
—compressed —-output filename.kraken

Some of the options available in Kraken:

Option Function

—db <string> Path to the folder (database name) containing the database files.
—output <string> Print output to filename.

—threads <integer> | Number of threads (only when multiple cores are used).
—fasta-input Input is FASTA format.

—fastq-input Input is FASTQ format.

—gzip-compressed | Inputis gzip compressed.

Create report files

Once the taxonomic assignation is done, from the Kraken output file we create a report of the analysis by running the
kraken-report script. Note that the database used must be the same as the one used to generate the output file in
the command above. The output file is a tab-delimited file with the following fields, from left to right:

1. Percentage of reads covered by the clade rooted at this taxon
2. Number of reads covered by the clade rooted at this taxon

3. Number of reads assigned directly to this taxon
4

. A rank code, indicating (U)nclassified, (D)omain, (K)ingdom, (P)hylum, (C)lass, (O)rder, (F)amily, (G)enus, or
(S)pecies. All other ranks are simply ‘-°.

5. NCBI taxonomy ID
6. Indented scientific name

Notice that we will have to redirect the output to a file with >.

kraken-report --db Minikraken filename.kraken > filename.kraken.report

1.3. Metagenomic screening of shotgun data 7

https://ccb.jhu.edu/software/kraken/

Paleogenomics Documentation, Release 0.1.0

Note: We can use a for loop to make the taxonomic assignation and create the report file for multiple samples.
Notice the assignation of variables £ilename and fname to return output files named after the sample.

for i in *.fastqg
do
filename=$ (basename "$i")
fname="${filename%.fastqg}"
kraken —--db Minikraken —--threads 4 --fastg-input $i —--output /${fname}.kraken
kraken-report —--db Minikraken ${fname}.kraken > ${fname}.kraken.report
done

Visualization of data with Krona

Finally, we can visualize the results of the Kraken analysis with Krona, which disaplys hierarchical data (like tax-
onomic assignation) in multi-layerd pie charts. The interactive charts created by Krona are in the html format
and can be viewed with any web browser. We will convert the kraken output in html format using the program
kt ImportTaxonomy, which parses the information relative to the query ID and the taxonomy ID.

ktImportTaxonomy -gq 2 -t 3 filename.kraken -o filename.kraken.html

Some of the options available in ktlmportTaxonomy:

Option Function

-q <integer> | Column of input files to use as query ID.

-t <integer> | Column of input files to use as taxonomy ID.
-0 <string> Output file name.

Note: If you want to analyze multiple kraken files from various samples you view the results in one single html file
running kt ImportTaxonomy as follows:

ktImportTaxonomy —-gq 2 -t 3 filename_1.kraken filename_2.kraken ... filename_n.kraken -
—0 all_samples.kraken.html

8 Chapter 1. Contents

https://github.com/marbl/Krona/wiki

Paleogenomics Documentation, Release 0.1.0

K r@n a < ° Search: X . Bacteria <

- 9 + Maxdepth (.:ount: 7135
Unassigned: 99

Taxon: 2
Rank: superkingdom

- 11+ Fontsize

-+ Chartsize
01%of [
Root |)

Collapse
Snapshot
Link

?

nterobacter cloacae

Bacteria
Root

Yersinia pseudc(ubsrcu\os s comple

X

c ia 0.06% .
Spirochaetia 0.04% .
F i 0.03% .
Desulfurispirillum indicum 0.01% -
i imkania is 0.01% .
F ium varium 0.01% .

sp. SH-PL17 0.01% -

cr 0.01% .

Building a Kraken standard database (on HPC clusters)

The pre-built Minikraken database is useful for a quick metagenomic screening of shotgun data. However, by building
larger databases (i.e. a larger set of k-mers gathered) we may increase the sensitivity of the analysis. One option is to
build the Kraken standard database. To create this database we use the command kraken-build, which downlads
the Re £ Seq complete genomes for the bacterial, archaeal, and viral domains, and builds the database.

kraken-build --standard —--db standardkraken.folder

Note:

» Usage of the database will require users to keep only the database.idx, database.kdb, taxonomy/
nodes.dmp and taxonomy/names . dmp files. During the database building process some intermediate file
are created that may be removed afterwards with the command:

kraken-build —--db standardkraken.folder —--clean

* The downloaded RefSeq genomes require 33GB of disk space. The build process will then require approxi-
mately 450GB of additional disk space. The final database.idx, database.kdb, and taxonomy/ files
require 200 Gb of disk space, and running one sample against such database requires 175 Gb of RAM.

Building a Kraken custom database (on HPC clusters)

Building kraken custum databases is computationally intensive. You will find a ready to use database. Kraken also
allows creation of customized databases, where we can choose which sequences to include and the final size of the
database. For example if you do not have the computational resources to build and run analyses with a full database
of bacterial genomes (or you don’t need to), you may want to build a custom database with only the genomes needed
for your application.

1.3. Metagenomic screening of shotgun data 9

Paleogenomics Documentation, Release 0.1.0

1. First of all we choose a name for our database and we create a folder with that name using mkdir. Let’s call

the database CustomDB. This will be the name used in all the dollowing commands after the ——db option.

. Download NCBI taxonomy files (the sequence ID to taxon map, the taxonomic names and tree information)

with kraken-build --download-taxonomy. The taxonomy files are necessary to associate a taxon to
the sequence identifier (the GI number in NCBI) of the fasta sequences composing our database. For this
reason we will build our database only with sequences from the NCBI RefSeq. For more information on the
NCBI taxonomy visit click here. This command will create a sub-folder taxonomy/ inside our CustomDB
folder:

kraken-build --download-taxonomy —--threads 4 —--db CustomDB

3. Install a genomic library. RefSeq genomes in fasta file from five standard groups are made easily available in

Kraken with the command kraken-build —download-library:
* bacteria : RefSeq complete bacterial genomes
e archaea : RefSeq complete archaeal genomes
e plasmid : RefSeq plasmid sequences
* viral : RefSeq complete viral genomes
* human : GRCh38 human genome

The following command will download all the RefSeq bacterial genomes (33Gb size) and create a folder
library/ with a sub-folder bacteria/ inside your CustomDB folder:

kraken-build --download-library bacteria —--threads 4 --db CustomDB

4. We can add any sort of RefSeq fasta sequences to the library with kraken-build --add-to-library.

For example we will add to the library of bacterial genomes the RefSeq sequences of mitochodrial genomes.
The sequences will be inside the sub-folder added/.

kraken-build --add-to-library mitochondrion.l.1l.genomic.fna —--threads 4 --db_
—CustomDB
kraken-build --add-to-library mitochondrion.2.1.genomic.fna —--threads 4 --db_
—CustomDB

Note: If you have several fasta files to add you can use a for loop:

for i in x.fasta
do

kraken-build --add-to-library $i --threads 4 —--db CustomDB
done

. When analyzing a metagenomics sample using a Kraken database the primary source of false positive hits is

represented by low-complexity sequences in the genomes themselves (e.g., a string of 31 or more consecutive
A’s). For this reason, once gathered all the genomes that we want to use for our custom database, low-complexity
regions have to be ‘dusted’. The program dustmasker from Blast+ identifies low-complexity regions and
soft-mask them (the corresponding sequence is turned to lower-case letters). With a for loop we run dust-
masker on each fasta file present in the library folder, and we will pipe (|) to dustmasker a sed command to
replace the low-complexity regions (lower-case) with Ns. Notice that the output is redirected (>) to a temporary
file, which is afterwards renamed to replace the original file fasta file with the command mv.

10

Chapter 1. Contents

https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi.
https://www.ncbi.nlm.nih.gov/books/NBK279681/

Paleogenomics Documentation, Release 0.1.0

for i in "find CustomDB/library \(-name 'x.fna' -o —-name 'x.ffn' \)°
do
dustmasker —in $i —-infmt fasta -outfmt fasta | sed -e '/>/!s/a\lc\|g\|t/N/g' >_
—tempfile
mv —-f tempfile $i
done

Some of the options available in Dustmasker:

Option Function

-in <string> input file name

-infmt <string> input format (e.g. fasta)
-outfmt8 <string> | output format (fasta)

6. Finally, we build the database with kraken-build. With this command, Kraken uses all the masked genomes
contained in the library (bacteria and mtDNA RefSeq) to create a database of 31 bp-long k-mers. We can
choose the size of our custom database (hence the number of k-mers included, and the sensitivity) with the
——max—db-size option (8 Gb here).

kraken-build —-build ——max-db-size 8 —--db CustomDB

Taxonomic assignation with Kraken custom database

Once our custom database is built we can run the command for taxonomic assignation of DNA reads agaisnt the
custom database, as in section 1.1 and 1.2.

kraken —--db CustomDB --fastg-input merged.fastg.gz —--gzip-compressed —--output sample.
—kraken
kraken-report —--db CustomDB sample.kraken > sample.kraken.report

Or, again, we can loop the commands if we have various samples.

for i in =.fastqg
do
filename=$ (basename "$i")
fname="${filename%.fastqg}"
kraken --db CustomDB —--threads 4 --fastg-input $i —--output ${fname}.kraken
kraken-report —--db CustomDB ${fname}.kraken > ${fname}.kraken.report
done

Finally, we can visualize the results of the Kraken analysis with Krona. Run kt ImportTaxonomy to generate the
html file and open it in a web browser to notice the difference with the analysis done with Minikraken.

ktImportTaxonomy -gq 2 -t 3 sample.kraken -o sample.kraken.html

1.3.2 Kraken2

The first version of Kraken use a large indexed and sorted list of k-mer/LCA pairs as its database, which may be
problematic for users due to the large memory requirements. For this reason Kraken 2 was developed. Kraken 2 is fast
and requires less memory, BUT the database false positive errors occur in less than 1% of queries (confidence scoring
thresholds can be used to call out to detect them). The default (or standard) database size is 29 GB (as of Jan. 2018, in
Kraken 1 the standard database is about 200 GB!), and you will need slightly more than that in RAM if you want to

1.3. Metagenomic screening of shotgun data 11

https://ccb.jhu.edu/software/kraken2/index.shtml

Paleogenomics Documentation, Release 0.1.0

build it. By default, Kraken 2 will attempt to use the dustmasker or segmasker programs provided as part of NCBI’s
BLAST suite to mask low-complexity regions.

A Kraken 2 database is a directory containing at least 3 files:
 hash.k2d: Contains the minimizer to taxon mappings
* opts.k2d: Contains information about the options used to build the database
* taxo.k2d: Contains taxonomy information used to build the database

Other files may also be present as part of the database build process, and can, if desired, be removed after a successful
build of the database.

Minikraken2

You can download the pre-built Minikraken2 database (containing bacteria, viral and archaea sequences) from the
website with wget, and extract the archive content with tar:

wget ftp://ftp.ccb. jhu.edu/pub/data/kraken2_dbs/minikraken2_v1_8GB_201904_UPDATE.tgz
tar —-xvzf minikraken2_vl1_8GB_201904_UPDATE.tgz

To classify the reads in a fastq file against the Minikraken2 database, you can run this command:

kraken2 —--db minikraken2_vl1_8GB filename.fastqg.gz ——gzip-compressed —--output filename.
—kraken —-report filename.kraken.report

Some of the options available in Kraken 2:

Option Function

—use-names Print scientific names instead of just taxids
—gzip-compressed | Input is gzip compressed

—report <string> Print a report with aggregrate counts/clade to file
—threads Number of threads (default: 1)

Note:

 In Kraken 2 you can generate the reports file by typing the ——report option (followed by a name for the
report file to generate) in the command used for the classification. In Kraken 1, report files are generated with a
specific command, after the classification (section 3.1.2: Create report files).

* In order to run later Krona, the Kraken output file must contain taxids, and not scientific names. So if you want
to run Krona do not call the option ——use-names.

The Kraken 2 report format, like Kraken 1, is tab-delimited with one line per taxon. There are six fields, from left to
right:

1. Percentage of fragments covered by the clade rooted at this taxon
2. Number of fragments covered by the clade rooted at this taxon

3. Number of fragments assigned directly to this taxon

12 Chapter 1. Contents

https://ccb.jhu.edu/software/kraken2/index.shtml?t=downloads

Paleogenomics Documentation, Release 0.1.0

4. A rank code, indicating (U)nclassified, (R)oot, (D)omain, (K)ingdom, (P)hylum, (C)lass, (O)rder, (F)amily,
(G)enus, or (S)pecies. Taxa that are not at any of these 10 ranks have a rank code that is formed by using the
rank code of the closest ancestor rank with a number indicating the distance from that rank. E.g., “G2” is a rank
code indicating a taxon is between genus and species and the grandparent taxon is at the genus rank.

5. NCBI taxonomic ID number
6. Indented scientific name

To visualize the results of the classification in multi-layerd pie charts, use Krona, as described in the section 3.1.3:
Visualization of data with Krona

Kraken 2 Custom Database

We have already created a custom database to use in this hands-on session so we can go straight to the classification
(step 4). However, we report here all the commands to build a Kraken2 database (steps 1-3).

1. The first step is to create a new folder that will contain your custom database (choose an appropriate name for
the folder-database, here we will call it Cust omDB). Then we have to install a taxonomy. Usually, you will use
the NCBI taxonomy. The following command will download in the folder /t axonomy the accession number
to taxon maps, as well as the taxonomic name and tree information from NCBI:

kraken2-build --download-taxonomy --db CustomDB

2. Install one or more reference libraries. Several sets of standard genomes (or proteins) are available, which are
constantly updated (see also the Kraken website).

* archaea: RefSeq complete archaeal genomes/proteins

* bacteria: RefSeq complete bacterial genomes/proteins

* plasmid: RefSeq plasmid nucleotide/protein sequences
« viral: RefSeq complete viral genomes/proteins

e human: GRCh38 human genome/proteins

* fungi: RefSeq complete fungal genomes/proteins

* plant: RefSeq complete plant genomes/proteins

* protozoa: RefSeq complete protozoan genomes/proteins
 nr: NCBI non-redundant protein database

 nt: NCBI non-redundant nucleotide database

e env_nr: NCBI non-redundant protein database with sequences from large environmental se-
quencing projects

 env_nt: NCBI non-redundant nucleotide database with sequences from large environmental se-
quencing projects

* UniVec: NCBI-supplied database of vector, adapter, linker, and primer sequences that may be
contaminating sequencing projects and/or assemblies

* UniVec_Core: A subset of UniVec chosen to minimize false positive hits to the vector database

You can select as many libraries as you want and run the following command, which will download the reference
sequences in the folder /1ibrary, as follows:

1.3. Metagenomic screening of shotgun data 13

https://ccb.jhu.edu/software/kraken2/index.shtml?t=manual#installation)

Paleogenomics Documentation, Release 0.1.0

kraken2-build --download-library bacteria --db CustomDB
kraken2-build --download-library viral --db CustomDB
kraken2-build --download-library plasmid —-db CustomDB
kraken2-build --download-library fungi —--db CustomDB

In a custom database, you can add as many fasta sequences as you like. For exmaple, you can download the
organelle genomes in fasta files from the RefSeq website with the commands wget:

wget ftp://ftp.ncbi.nlm.nih.gov/refseqg/release/mitochondrion/mitochondrion.1.1.
—~genomic.fna.gz
wget ftp://ftp.ncbi.nlm.nih.gov/refseq/release/mitochondrion/mitochondrion.2.1.
—genomic.fna.gz

The downloaded files are in compressed in the gz format. To unzip them run the gunzip command:

gunzip mitochondrion.l.l.genomic.fna.gz
gunzip mitochondrion.2.1l.genomic.fna.gz

Then you can add the fasta files to your library, as follows:

kraken2-build --add-to-library mitochondrion.l.1l.genomic.fna --db CustomDB
kraken2-build --add-to-library mitochondrion.2.1l.genomic.fna --db CustomDB

3. Once your library is finalized, you need to build the database (here we set a maximum database size of 8§ GB
(you must indicate it in bytes!) with the ——max—-db—size option).

kraken2-build —--build —-—max-db-size 8000000000 —--db CustomDB

Warning: Kraken 2 uses two programs to perform low-complexity sequence masking, both available
from NCBI: dustmasker, for nucleotide sequences, and segmasker, for amino acid sequences. These
programs are available as part of the NCBI BLAST+ suite. If these programs are not installed on the local
system and in the user’s PATH when trying to use kraken2-build, the database build will fail. Users who
do not wish to install these programs can use the ——no-masking option to kraken2-build in conjunction
with any of the ——download-library, ——add-to-library, or ——standard options; use of the
—-—no-masking option will skip masking of low-complexity sequences during the build of the Kraken 2
database.

The kraken2-inspect script allows users to gain information about the content of a Kraken 2 database.
You can pipe the command to head, or less.

kraken2-inspect --db path/to/dbfolder | head -5

4. Finally, we can run the classification of the reads against the custom database with the kraken2 command:

kraken2 --db CustomDB filename.fastg.gz —-—gzip-compressed --output filename.
—~kraken —-report filename.report

5. To visualize the results of the classification in multi-layerd pie charts, use Krona, as described in the section
3.1.3: Visualization of data with Krona

Note: Recently, a novel metagenomics classifier, KrakenUniq, has been developed to reduce false-positive identifi-
cations in metagenomic classification. KrakenUniq combines the fast k-mer-based classification of Kraken with an

14 Chapter 1. Contents

https://www.ncbi.nlm.nih.gov/genome/organelle/
https://github.com/fbreitwieser/krakenuniq

Paleogenomics Documentation, Release 0.1.0

efficient algorithm for assessing the coverage of unique k-mers found in each species in a dataset. On various test
datasets, KrakenUniq gives better recall and precision than other methods and effectively classifies and distinguishes
pathogens with low abundance from false positives in infectious disease samples.

1.3.3 Mataphlan 3

MetaPhlAn is a computational tool that relies on ~1.1M unique clade-specific marker genes identified from ~100,000
reference genomes (~99,500 bacterial and archaeal and ~500 eukaryotic) to conduct taxonomic profiling of microbial
communities (Bacteria, Archaea and Eukaryotes) from metagenomic shotgun sequencing data. MetaPhlAn allows:

* unambiguous taxonomic assignments;

* an accurate estimation of organismal relative abundance;

* species-level resolution for bacteria, archaea, eukaryotes, and viruses;
e strain identification and tracking

e orders of magnitude speedups compared to existing methods.

* metagenomic strain-level population genomics

To basic usage of MetaPhlAn for taxonomic profiling is:

metaphlan filename.fastg(.gz) ——input_type fastg -o outfile.txt

Note: MetaPhlAn relies on BowTie2 to map reads against marker genes. To save the intermediate BowTie2 output
use ——bowt ie2out, and for multiple CPUs (if available) use ——nproc:

metaphlan filename.fastq(.gz) —-bowtieZout filename.bowtie2.bz2 —--nproc 5 ——input_
—type fastg —-o output.txt

The intermediate BowTie2 output files can be used to run MetaPhlAn quickly by specifying the input
(-—input_type bowtie2out):

metaphlan filename.bowtie2.bz2 —--nproc 5 ——input_type bowtie2out -o output.txt

For more information and advanced usage of MetaPhlAn see the manual and the wiki page (available for MetaPhlAn
2 at the moment).

1.4 Alignment of reads to a reference genome

The metagenomic screenig of the shotgun library detected reads assigned to Yersinia pestis. The following step is to
ascertain that these molecules are authentic. You can do that by mapping your pre-processed fastq files (merged
and trimmed) to the Yersinia pestis CO92 strain reference sequence, available in the RefSeq NCBI database. Here, in
order to obtain an optimal coverage for the subsequent variant call, we will run the alignment on a different fastq
file that we prepared to simulate an enriched library.

1.4. Alignment of reads to a reference genome 15

https://www.dropbox.com/sh/7qze7m7g9fe2xjg/AAAlyQITZuUCtBUJxpxhIroIa/mpa_v30_CHOCOPhlAn_201901_marker_info.txt.bz2?dl=1
https://github.com/biobakery/MetaPhlAn/wiki/MetaPhlAn-3.0
https://github.com/biobakery/biobakery/wiki/metaphlan2
https://www.ncbi.nlm.nih.gov/genome/?term=Yersinia%20pestis

Paleogenomics Documentation, Release 0.1.0

1.4.1 Preparation of the reference sequence

Index the reference sequence with bwa

To align the reads to the reference sequence we will use the program BWA, in particular the BWA aln algorithm.
BWA first needs to construct the FM-index for the reference genome, with the command BWA index. FM-indexing
in Burrows-Wheeler transform is used to efficiently find the number of occurrences of a pattern within a compressed
text, as well as locate the position of each occurrence. It is an essential step for querying the DNA reads to the reference
sequence. This command generates five files with different extensions: amb, ann, bwt, pac, sa.

bwa index —-a is reference.fasta

Note: The option —a indicates the algorithm to use for constructing the index. For genomes smaller than < 2 Gb use
the is algorithm. For larger genomes (>2 Gb), use the bwt sw algorithm.

Create a reference dictionary

A dictionary file (dict) is necessary to run later in the pipeline GATK RealignerTargetCreator. A sequence
dictionary contains the sequence name, sequence length, genome assembly identifier, and other information about the
sequences. To create the dict file we use Picard.

picard CreateSequenceDictionary R= referece.fasta O= reference.dict

Note: In our server environment we can call Picard just by typing the program name. In other environments (including
your laptop) you may have to call Picard by providing the full path to the java file jar of the program:

java —-jar /path/to/picard.jar CreateSequenceDictionary R= referece.fasta O= ref.dict

Index the reference sequence with Samtools

The reference sequence has to be indexed in order to run later in the pipeline GATK IndelRealigner. To do that,
we will use Samtools, in particular the tool samtools faidx, which enables efficient access to arbitrary regions
within the reference sequence. The index file typically has the same filename as the corresponding reference sequece,
with the extension fai appended.

samtools faidx reference.fasta

1.4.2 Alignment of the reads to the reference sequence

Alignment of pre-processed reads to the reference genome with BWA aln

To align the reads to the reference genome we will use BWA aln, which supports an end-to-end alignment of reads to
the reference sequence. The alternative algorithm, BWA mem supports also local (portion of the reads) and chimeric

16 Chapter 1. Contents

https://github.com/lh3/bwa
https://broadinstitute.github.io/picard/
http://www.htslib.org/

Paleogenomics Documentation, Release 0.1.0

alignments (resulting in a larger number of mapped reads than BWA aln). BWA aln is more suitable for aliging
short reads, like expected for ancient DNA samples. The following comand will generate a sai file.

bwa aln reference.fasta filename.fastg.gz —n 0.1 -1 1000 > filename.sai

Some of the options available in BWA aln:

Option | Function

-n Maximum edit distance if the value is an integer. If the value is float the edit distance is automatically
num- chosen for different read lengths (default=0.04)
ber

-1 inte- | Seed length. If the value is larger than the query sequence, seeding will be disabled.
ger
-0 inte- | Maximum number of gap opens. For aDNA, tolerating more gaps helps mapping more reads (default=1).
ger

Note:

* Due to the particular damaged nature of ancient DNA molecules, carrying deaminations at the molecules ends,
we deactivate the seed—-1ength option by giving it a high value (e.g. -1 1000).

* Here we are aligning reads to a bacterial reference genome. To reduce the impact of spurious alignemnts due to
presence bacterial species closely related to the one that we are investigating, we will adopt stringent conditions
by decreasing the maximum edit distance option (-n 0.1). For alignment of DNA reads to the human
reference sequence, less stringent conditions can be used (—n 0.01 and —o 2).

Once obtained the sai file, we align the reads (fastq file) to the reference (fasta file) using BWA samse, to
generate the alignment file sam.

bwa samse reference.fasta filename.sai filename.fastg.gz -f filename.sam

Converting sam file to bam file

For the downstream analyses we will work with the binary (more compact) version of the sam file, called bam. To
convert the sam file in bam we will use Samtools view.

samtools view —-Sb filename.sam > filename.bam

Note: The conversion from sam to bam can be piped (|) in one command right after the alignment step:

bwa samse reference.fasta filename.sai filename.fastg.gz | samtools view —-Sb - >
—filename.bam

To view the content of a sam file we can just use standard commands like head, tail, less, while to view the
content of a bam file (binary format of sam) we have to use Samtools view:

samtools view filename.bam

You may want to display on the screen one read/line (scrolling with the spacebar):

1.4. Alignment of reads to a reference genome 17

Paleogenomics Documentation, Release 0.1.0

samtools view filename.bam | less -S

while to display just the header of the bam file:

samtools view -H filename.bam

Sorting and indexing the bam file

To go on with the analysis, we have to sort the reads aligned in the bam file by leftmost coordinates (or by read name
when the option —n is used) with Samtools sort. The option o is used to provide an output file name:

samtools sort filename.bam -o filename.sort.bam

The sorted bam files are then indexed with Samt ools index. Indexes allow other programs to retrieve specific parts
of the bam file without reading through each sequence. The following command generates a bai file, a companion
file of the bam which contains the indexes:

samtools index filename.sort.bam

Adding Read Group tags and indexing bam files

A number of predefined tags may be appropriately assigned to specific set of reads in order to distinguish samples,
libraries and other technical features. To do that we will use Picard. You may want to use RGLB (library ID) and RGSM
(sample ID) tags at your own convenience based on the experimental design. Remember to call Picard from the path
of the jar file.

picard AddOrReplaceReadGroups INPUT= filename.sort.bam OUTPUT= filename.RG.bam
—RGID=rg_id RGLB=1lib_id RGPL=platform RGPU=plat_unit RGSM=sam_id VALIDATION_
—STRINGENCY=LENIENT

Note:

* In some instances, Picard may stop running and return error messages due to conflicts with sam specifications
produced by BWA (e.g. “MAPQ should be O for unmapped reads”). To suppress this error and allow Picard to
continue, we pass the VALIDATION_STRINGENCY=LENIENT options (default is STRICT).

* Read Groups may be also added during the alignment with BWA using the option —R.

Once added the Read Group tags, we index again the bam file:

samtools index filename.RG.bam

Marking and removing duplicates

Amplification through PCR of genomic libraries leads to duplication formation, hence reads originating from a single
fragment of DNA. The MarkDuplicates tool of Picard marks the reads as duplicates when the 5’-end positions
of both reads and read-pairs match. A metric file with various statistics is created, and reads are removed from the
bam file by using the REMOVE_DUPLICATES=True option (the default option is False, which simply ‘marks’
duplicate reads keep them in the bam file).

18 Chapter 1. Contents

Paleogenomics Documentation, Release 0.1.0

picard MarkDuplicates I= filename.RG.bam O= filename.DR.bam M=output_metrics.txt
—REMOVE_DUPLICATES=True VALIDATION_STRINGENCY=LENIENT &> logFile.log

Once removed the duplicates, we index again the bam file:

samtools index filename.DR.bam

Local realignment of reads

The presence of insertions or deletions (indels) in the genome may be responsible of misalignments and bases
mismatches that are easily mistaken as SNPs. For this reason, we locally realign reads to minimize the num-
ber of mispatches around the indels. The realignment process is done in two steps using two different tools
of GATK called with the -T option. We first detect the intervals which need to be realigned with the GATK
RealignerTargetCreator, and save the list of these intevals in a file that we name target . intervals:

gatk -T RealignerTargetCreator -R reference.fasta -I filename.DR.bam -o target.
—intervals

Note: Like Picard, in some server environment you can call GATK just by typing the program name. In other
environments (also in this server) you have to call GATK by providing the full path to the java jar file. Here, the
absolute path to the file is ~/Share/Paleogenomics/programs/GenomeAnalysisTK. jar:

java —jar ~/Share/Paleogenomics/programs/GenomeAnalysisTK. jar -T_,
—RealignerTargetCreator -h

Warning: In version 4 of GATK the indel realigment tools have been retired from the best practices (they
are unnecessary if you are using an assembly based caller like Mutect2 or HaplotypeCaller). To use the indel
realignment tools make sure to install version 3 of GATK.

Then, we realign the reads over the intervals listed in the target.intervals file with the option
—-targetIntervals of the tool IndelRealigner in GATK:

java -jar ~/Share/Paleogenomics/programs/GenomeAnalysisTK.jar -T IndelRealigner -R_,
—reference.fasta -I filename.RG.DR.bam -targetIntervals target.intervals -o filename.
—final.bam —-filter_ bases_not_stored

Note:

* If you want, you can redirect the standard output of the command into a 1og file by typing at the end of the
command &> logFile.log

* The option —-filter_bases_not_stored is used to filter out reads with no stored bases (i.e. with *
where the sequence should be), instead of failing with an error

The final bam file has to be sorted and indexed as previously done:

samtools sort filename.final.bam -o filename.final.sort.bam
samtools index filename.final.sort.bam

1.4. Alignment of reads to a reference genome 19

Paleogenomics Documentation, Release 0.1.0

Generate flagstat file

We can generate a file with useful information about our alignment with Samtools flagstat. This file is a final
summary report of the bitwise FLAG fields assigned to the reads in the sam file.

samtools flagstat filename.final.sort.bam > flagstat_filename.txt

Note:

* You could generate a flagstat file for the two bam files before and after refinement and see the differences.

* You can decode each FLAG field assigned to a read on the Broad Institute website.

Visualization of reads alignment

Once generated the final bam file, you can compare the bam files before and after the refinement and polishing process
(duplicates removal, realignment around indels and sorting). To do so, we will use the program IGV, in which we will
first load the reference fasta file from Genomes —> Load genome from file and then we will add one (or more) bam
files with File —> Load from file:

[X X} GV
GCF_000009065.1_... [&] | NC_003143.1 | IC_003143.1:2,319,775-2,333,953 Go Tt <« » @ [= 2 | = RRERERARNY AARRARRY
1
Coordinates .
2,320 kb 2322 kb 2,324 kb 2,326 kb 2,328 kb 2,330 kb 2,332 kb 23
| | | | | | | | | I | |
[-28
Coverage
CTTYW R ' T W7 b sl o

e ' ¥ "Ny W WY Y PRRTR ey L Y i btk o n. Dbl . o8 i

Reads.alignment

[
Coverage

iReads-alignment

5 tracks loaded |INc_oo3143.1:1,879301 || |lsem of 201m

1.4.3 Create mapping summary reports

We will use Qualimap to create summary reports from the generated bam files. As mentioned in the website,
Qualimap examines sequencing alignment data in sam/bam files according to the features of the mapped reads and
provides an overall view of the data that helps to detect biases in the sequencing and/or mapping of the data and eases
decision-making for further analysis.

20 Chapter 1. Contents

https://broadinstitute.github.io/picard/explain-flags.html

Paleogenomics Documentation, Release 0.1.0

qualimap bamgc -c¢ —-bam input.bam

Here are some screenshots of the outputs:

Nunteofconend s

At this stage we have created different type of summary report using FastQC and Qualimap. To create a unique
summary that integrate and compare all the generated reports, we will use Mult iQC. If all the reports are in the same
directory and its sub-directories, you can run MultiQC as follows:

multigc

A list of programs that generate output files recognized by MultiQC are availble here: https://github.com/ewels/
MultiQC

Multige will create a summary report in html format that will let you compare all the summary reports for each of
your samples:

MultioC

A modular tool to aggregate results from bioinformatics analyses across many samples into a single report.

Report generated on 2018-03-15, 16:31 based on data in: /Users/philewels/GitHub/MultiQC_website/public_html/examples/wgs

General Statistics

A3 Copy table £t Configure Columns Showing ¢/ rows and 8/,, columns.

Sample Name % GC Ins. size = 30X Coverage % Aligned % Dups % GC M Seqs
P4107_1001 41% 358 74.7% 36.0X 97.3% 6.4% 41% 383.6
P4107_1002 41% 367 82.3% 40.0X 97.8% 9.9% 41% 430.2
P4107_1003 41% 365 82.4% 40.0X 97.6% 10.5% 41% 431.4
P4107_1004 41% 363 84.7% 46.0X 98.2% 39.4% 40% 498.2
P4107_1005 41% 368 85.3% 45.0X 98.0% 24.5% 41% 484.2
P4107_1006 41% 362 84.1% 43.0X 98.1% 12.4% 41% 453.2

1.4. Alignment of reads to a reference genome 21

https://github.com/ewels/MultiQC
https://github.com/ewels/MultiQC

Paleogenomics Documentation, Release 0.1.0

1.4.4 Damage analysis and quality rescaling of the BAM file

To authenticate our analysis we will assess the post-mortem damage of the reads aligned to the reference sequence. We
can track the post-portem damage accumulated by DNA molecules in the form of fragmentation due to depurination
and cytosine deamination, which generates the typical pattern of C->T and G->A variation at the 5’- and 3’-end of the
DNA molecules. To assess the post-mortem damage patterns in our bam file we will use mapDamage, which analyses
the size distribution of the reads and the base composition of the genomic regions located up- and downstream of each
read, generating various plots and summary tables. To start the analysis we need the final bam and the reference
sequence:

mapDamage -1 filename.final.sort.bam -r reference.fasta

mapDamage creates a new folder where the output files are created. One of these files, is named
Fragmisincorporation_plot.pdf which contains the following plots:

A A C C
05 4 — - — 0.5
- - - 04
3 .
5 ¢ ...;'..._ N - o3
O L]
o : - — - 02
[T
0.1 — - — ~ 0.1
0.0 — - - — 0.0
G G T T
0.5 — - - r 0.5
04 — : - — - 04
a P P LT T N R 0®o
0.3 — : - .. + E e L.l eele, itittil- 03
& °\ Tee o . e®eocee®e / ’ o."?""_? 0,%0% %,
(o2 00000%00® '0...00000 0e® . 0g000%0 \/ .
L 02 A 0%’ . - — é - 0.2
w \ :
o I
.................. R L R
0.1 — T - - - 0.1
0.0 — — - “— 0.0
rrrreerere-rererererer rerrrrerterrrrrrreel rrrrrrrerrereeereeerer reerererrerrrereree
SPTQYIPYWT TNCTOONROL 2RRRNPRYYRY T TNOTOON002 SRPTPRTRVT TNOTLONROS 2PRROPYRY TAOTOON DO
I 1 1 I
0.30 — r— 0.30
0.25 — ~ 0.25
0.20 — — 0.20
0.15 — ~ 0.15
0.10 — ~ 0.10
0.05 — ~ 0.05
0.00 ~ - 0.00

If DNA damage is detected, we can run mapDamage again using the ——rescale-only option and providing the
path to the results folder that has been created by the program (option —d). This command will downscale the quality
scores at positions likely affected by deamination according to their initial quality values, position in reads and damage

22 Chapter 1. Contents

Paleogenomics Documentation, Release 0.1.0

patterns. A new rescaled bam file is then generated.

mapDamage -1 filename.final.sort.bam -r reference.fasta —--rescale-only -d results_
—~folder

You can also rescale the bam file directly in the first command with the option ——rescale:

mapDamage -1 filename.final.sort.bam -r reference.fasta —-rescale

Note: Another useful tool for estimating post-mortem damage (PMD) is PMDTools. This program uses a model
incorporating PMD, base quality scores and biological polymorphism to assign a PMD score to the reads. PMD > 0
indicates support for the sequence being genuinely ancient. PMDTools filters the damaged reads (based on the selected
score) in a separate bam file which can be used for downstream analyses (e.g. variant call).

The rescaled bam file has to be indexed, as usual.

samtools index filename.final.sort.rescaled.bam

1.4.5 Edit Distance

The edit distance defines the number of nucleotide changes that have to be made to one read sequence for it to be
identical to the reference sequence. To be more confident about the quality and authenticity of your sequencing data,
you need to align your reads againt your reference sequence and the genome of a closely related species. Here we will
align our fastq file against the Yersinia pseudotuberculosis genome, following all the steps from 4.1 to 4.4. The edit
distance must be lower when aligning the reads to the reference sequence compared to the closely related species.

Closely related species

Reference sequence

edit distance

To calculate the edit distance we will use BAMStats, a tool for summarising Next Generation Sequencing alignments.
The commands to generate summary-charts, including the edit distance is:

BAMStats —-i filename.rescaled.bam -v html -d -g -o outfile.html

1.4. Alignment of reads to a reference genome 23

https://github.com/pontussk/PMDtools
https://www.ncbi.nlm.nih.gov/genome/?term=Yersinia+pseudotuberculosis
http://bamstats.sourceforge.net/

Paleogenomics Documentation, Release 0.1.0

Option Function
-i filename SAM or BAM input file (must be sorted).
-v View option for output format (currently accepts ‘simple’ or ‘html’; default, simple).

html/simple

-d

If selected, edit distance statistics will also be displayed as a separate table (optional).

-q

If selected, mapping quality (MAPQ) statistics will also be displayed as a separate table (optional).

1.5 Variant calling and visualization

Once the reads are aligned and the data authenticated through post-mortem damage analysis, we can analyse the variant
positions in the samples against the reference sequence.

1.5.1 Variants calling

We will use two common tools for variants calling: Samtools, in particular samtools mpileup, in combination
with bcftools call of the program BCFtools.

samtools mpileup -B -ugf reference.fasta filename.final.sort.rescaled.bam | bcftools

—~call -vmO z - > filename.vcf.gz
Samtools Function
mpileup
options
-B, -n0-BAQ | BAQ is the Phred-scaled probability of a read base being misaligned. Applying this option greatly

helps to reduce false SNPs caused by misalignments.

-u, —uncom-
pressed

Generate uncompressed VCF/BCF output, which is preferred for piping.

-g,-BCF

Compute genotype likelihoods and output them in the binary call format (BCF). As of v1.0, this
is BCF2 which is incompatible with the BCF1 format produced by previous (0.1.x) versions of
samtools.

-f, —fasta-ref

file

The faidx-indexed reference file in the FASTA format. The file can be optionally compressed by
bgzip.

24

Chapter 1. Contents

http://www.htslib.org/

Paleogenomics Documentation, Release 0.1.0

BCFtools Function
call op-
tions

-V, Output variant sites only.
—variants-
only

-m, Alternative modelfor multiallelic and rare-variant calling designed to overcome known limitations
—multiallelic4 in -c calling model (conflicts with -c)

caller
-g, -BCF Compute genotype likelihoods and output them in the binary call format (BCF). As of v1.0, this
is BCF2 which is incompatible with the BCF1 format produced by previous (0.1.x) versions of

samtools.
-0, Output compressed BCF (b), uncompressed BCF (u), compressed VCF (z), uncompressed VCF (v).
—output-
type blulzly

The detected genetic variants will be stored in the vcf file. The genetic variants can be filtered according to some
criteria using BCFtools:

bcftools filter -O z -o filename.filtered.vcf -s LOWQUAL -i'%QUAL>19'" filename.vcf.gz

BCFtools filter op- | Function
tions
-0, -output-type | Output compressed BCF (b), uncompressed BCF (u), compressed VCF (z), uncompressed
blulzly VCF (v).

-0, —output file Output file.

-S, —soft-filter | Annotate FILTER column with <string> or, with +, a unique filter name generated by the
stringl+ program (“Filter%d”).

-i, —include expres- | Include only sites for which expression is true.

sion

Note: other options can be added when using BCFtools filter:

Option Function

-g, -SnpGap int | Filter SNPs within int base pairs of an indel

-G, -IndelGap | Filter clusters of indels separated by int or fewer base pairs allowing only one to
int pass

Instead of samtools mpileup and beftools call (or in addition to) we can use gatk
HaplotypeCaller:

java —jar GenomeAnalysisTK.jar -T HaplotypeCaller -R reference.fasta -I filename.
—~final.sort.rescaled.bam -o original.vcf.gz

java —jar GenomeAnalysisTK.jar -T VariantFiltration —-R reference.fasta -V filename.
—vcf.gz —o filename.filtered.vcf.gz ——filterName 'Cov3|Qual20' --filterExpression
< 'DP>2| |QUAL>19"'

Now that you have your vcf file, you can open the file (use nano or vim in the server, or download the file in your
laptop with scp and open it in a text editor) and try to search diagnostic variants (e.g. for classification). You can also

1.5. Variant calling and visualization 25

https://samtools.github.io/bcftools/bcftools.html#expressions

Paleogenomics Documentation, Release 0.1.0

visualize the variants in a specific program, as described below.

1.5.2 Variants visualization

To be able to visualize the variants in the vc £ files, you can use the program IGV, which accepts multiple input files
formats eg. fasta, bam, vcf and gff. After loading your bam file(s) and the corrsponding vcf file(s), you will
see something likt that:

X 16V
GCF_000009065.1_... [~ NC_003143.1 |5 1C_003143.1:1,272,532-1,272,586 Go T <« » @ [= 2 | Errrrreerrern i ®=
1
- 56 bp
Coo rd Inates 1,272,540 bp. 1,272,550 bp 1,272,560 bp 1,272,570 bp 1,272,580 bp
| | 1 | | |
25
Coverage B
Icl
icl
icl
icl T
=
Reads, alignment —
icl
Icl
icl
icl
icl
I
L
=||/AAAAGCAATATGATCAAGCGATCACTGTTTTTCAGAGT T TTTGTGAAACAGTATCC
Ref_ Sequence [3 [3 Q Y D Q A | T V F Q S F V [3 Q Y P
| ANONYMOUS

In this figure, we observe in the bam alignment file a T->C transition in the corresponding position.

1.6 Filtering, annotating and combining SNPs

To investigate the genetic variants in the vc £ files we will use the program snpToolkit. The —h option will display the
following message:

snpToolkit -h

positional arguments:
{annotate, combine} commands
annotate Please provide one or multiple vcf files
combine combine snpToolkit output files in one alignment in fasta format

Two options are possible: annotate or combine.

1.6.1 SNPs filtering and annotion

The snpToolkit annotate command will display general information about the usage of the program:

snpToolkit annotate

usage: snpToolkit annotate [-h] —-i IDENTIFIER —-g GENBANK
[-f EXCLUDECLOSESNPS] [—-g QUALITY] [-d DEPTH]

(continues on next page)

26 Chapter 1. Contents

https://github.com/Amine-Namouchi/snpToolkit

Paleogenomics Documentation, Release 0.1.0

(continued from previous page)

[-r RATIO] [-e EXCLUDE] [--plot]

optional arguments:
-h, —--help show this help message and exit

snpToolkit annotate required options:

-1 IDENTIFIER provide a specific identifier to recognize the file(s)
to be analyzed
—-g GENBANK Please provide a genbank file

snpToolkit annotate additional options:
—f EXCLUDECLOSESNPS exclude SNPs if the distance between them is lower then
the specified window size in bp

-g QUALITY quality score to consider as a cutoff for variant
calling. default value [20]

—-d DEPTH minimum depth caverage. default value [3]

-r RATIO minimum ratio that correspond to the number of reads

that has the mutated allele / total depth in that
particular position. default value [0]

—e EXCLUDE provide a tab file with genomic regions to exclude in
this format: regionl start stop

Here is a simple example on how to use snpToolkit:

snpToolkit annotate -i VCF-filename.vcf.gz —g genbankFile.gbff -g 30 -d 5 -r 0.9

snpToolkit can automatically recogninze vcf files generated with the following programs: samtools mpileup,
gatk HaplotyCaller and freeBayes. The vcf files could be gzipped or not. In the command line above,
snpToolkit will filter and annotate all SNPs in the vc£ file(s) that fullfil the following criteria: quality >= 30,
depth of coverage >= 5andratio >= 0.09.

Note: For each SNP position, the ratio (r) is calculated as follows:
r=dm / (dr + dm)
 dr= Number of reads having the reference allele

* dm= Number of reads having the mutated allele

The output file(s) of snpToolkit is a tabulated file(s) that you can open with Microsoft Excel and it will look as follow:

1 |#ssnpToolit=version 1.0
2 §VCE-fil vef g2 -g GCF_000003065.1_ASM306v1_genomic.gbif -a.30 -4 5 -r0.9

3 #RVElFlle=VCF-filename.vel g2

4| ##Total number of SNPs before SNProfiler processing: 893

5 ##The options -f and -e were not used

6 ##Among the 893 SNPs, the number of those with a quality score >= 30, 3 depth >= 5 and a ratio >= 09 is: 55
"

¢ genome 4653728 bp

10 #HNC_003134.1: Yersinia pestis COS: m plete sequence 96210 bp.

11 ##The mapped and annotated SNPs ar Hlow:

12 m Gen RBS tRNA rRNA ncRNA Pseud intergentiSynonymeus Nonsynonumous

13 #ANC 00343239 O | 3 0) o 7 2

14 #ENC 0031311 1 0 0 0) o 2 1 0

15 #HNC003134: 2| 0 | O 0) o 1 2 0

16 ##Syn=Synonymous NS=Non-Synonymous

17w

18 ##Coordinates Ref SNP Depth Nbof reads Ref Nbreads SNPs Ratio Quality Location Product Orientation Coordinates anntation Ref codon SNP codon Ref AA SNP AA Coodinates Protein Effect Distribution

6 15 intergenic . - - NC.0031431

7 0 7 115 VPOOD2I|hemN ‘coproporphyrinogen Il oxidase + 387 a6 em v | v 128 Syn | NC_0031431
37,9587 YPO00G3|YPO0DS3 33 see ac a1 15 NS NC_003143.1

20 acc ac T ' 7 NS NC_003143.1
G

plete genome 4653728 bp
plete genome 4653728 bp

o0
-

20| 2038
2 mswe o
2| 1om3 | c
23 sesaes T
2| e | T

1 hyport

1 13 veoon22|ghE thiosulfate sulf
1166 intergenic

1 1& ¥PO043|rpoD RNA polymerase sigma factor RpoD 1857 GET | GGC

” plete genome 4653728 bp
NC_003143.1 pestis €092 chro , complete genome 4653728 bp
[519 Syn | NC_003143.1: Yersinia pestis C092 chromosome, complete gencme 4653728 bp

cooooo

Ao =>-n

The header of the generated snpToolkit output file includes useful information e.g. raw number of SNPs, Number of
filtered SNPs, SNPs distribution, etc. ..

1.6. Filtering, annotating and combining SNPs 27

Paleogenomics Documentation, Release 0.1.0

1.6.2 Compare and combine multiple annotation files

After generating a set of output files, you can run snpToolkit combine:

usage: snpToolkit combine [-h] —--location LOCATION [-r RATIO] [-d DEPTH]
[--bam BAMFOLDER] [--snps {ns,s,all,inter}]

optional arguments:
-h, —-help show this help message and exit

snpToolkit combine required options:
——location LOCATION provide the name of the locus you want to create
fasta alignment for

snpToolkit additional options:

-r RATIO SNP ratio
-d DEPTH depth cutoff for cheking missing data
——bam BAMFOLDER path to the folder containing bam files

--snps {ns,s,all,inter}
Specify if you want to concatenate all SNPs or just
synonymous (s), non-synonymous (ns) or intergenic
(inter) SNPs. default [all]

snpToolkit combine will compare all the SNPs identified in each file and create two additional output files:
1) atabulated files with all polymorphic sites
2) a fasta file.

As we will be working with ancient DNA, a small fraction of your genome could be covered. In this case we will use
the option ——bam to indicate the path to the folder containing the bam files. The option —d must be used with the
option ——bam. By default, all SNPs will be reported. This behaviour can be changed using the option ——snp.

Note: It is also possible to use the option ——bam with modern data as some genomic regions could be deleted.

The file reporting the polymorphic sites is organized as follows:

ID Coordi- REF | SNP | Columns with SNP informa- | sam- sam- sam- sam-
nates tion plet ple2 ple3 ple4
snpl | 130 A T 1 1 1 1
snp2 | 855 C G 0 0 ? 1
snp3 | 1315 A C 1 1 0 0
snp4 | 12086 G A 1 0 ? 0

The table above reports the distribution of all polymorphic sites in all provided files. As we provided the bam files
of the ancient DNA samples, snpToolkit will check if the polymorphic sites (snp2 and snp4) are absent in sample3
because there is no SNP in that positions or because the region where the snps are located is not covered. In the latter
case, snpToolkit will add a question mark ? that reflects a missing data. From the table above, it will be possible to
generate a fasta file, like the one below:

>Reference
ATCGGGTATGCCAATGCGT
>Samplel
ACCGGGTATGCCAATGTGT
>Sample2

(continues on next page)

28 Chapter 1. Contents

Paleogenomics Documentation, Release 0.1.0

(continued from previous page)

ATTGGGTATGCCAGTGCGT
>Sample3
?TTGAGT?TGTCA?TACGT
>Sampled
ATCGGGTATGCCAATGCGT

The fasta output file will be used to generate a maximum likelihood tree using IQ—-TREE

1.6.3 Phylogenetic tree reconstruction

There are several tools to build phylogenetic trees. All of these tools, use an alignment file as input file. Now that we
have generated an alignment file in fasta format, we will use IQ-TREE to build a maximum likelihood tree. We
use IQ—-TREE for several reasons:

¢ It performs a composition chi-square test for every sequence in the alignment. A sequence is denoted failed if
its character composition significantly deviates from the average composition of the alignment.

* Availability of a wide variety of phylogenetic models. TQ—-TREE uses ModelFinder to find the best substitution
model that will be used directly to build the maximum likelihood phylogenetic tree.

e Multithreading

The phylogenetic tree generated can be visualized using Figtree.

1.7 DO-IT-YOURSELF

In this final hands-on session you will analyse shotgun (reduced) sequencing data generated from an ancient human
tooth.The genomic library built from the DNA extract was sequenced on an Illumina platform in paired-end mode.
Your task is:

1. Process the raw reads (remove adapters, merge the reads, section 2).

2. Align the reads to the human mitochondrial DNA (mtDNA) reference sequence, assess the damage of DNA
molecules, call the variants (sections 4-5-6).

3. Run the metagenomic screning of the DNA extract with Kraken using the Minikraken database (section 3).
After reads pre-processing it is up to you whether first aliging the reads or screening the metagenomic content.

¢ Option 1: You can use your vcf file to assign an haplogroup to the human samples that you analysed. Some
useful tools for haplogroup assignation:

— Check the variant positions in Phylotree (http://www.phylotree.org/)
— Load the vcf file in Haplogrep (https://haplogrep.uibk.ac.at)

¢ Option 2: Run again the metagenomic screening with a Custom Database of Kraken (provided by us), and
compare the results with those obtained with Minikraken.

1.8 R session

In this hands-on we will use R to run analyses and create charts from the abundance tables that we generated with
Kraken2.

1.7. DO-IT-YOURSELF 29

https://www.ncbi.nlm.nih.gov/pubmed/28481363
http://www.phylotree.org/
https://haplogrep.uibk.ac.at

Paleogenomics Documentation, Release 0.1.0

First of all, in R, we must set up the folder which contains the abundance table:

setwd ("~/Documents/WORK/2-PROJECTS/HiddenFoods/HiddenFoods_analysis/krk2_genome_
—length_normalized_abundances_July2019/species")

Then we can import the abundance table files:

——> you can edit the files, eg remove last column 'Detail!

dataframes in R must do not allow identical row names, force row names as numbering,
—by using row.names=NULL.

#EOF issue with single quotes (') in species names, use read.delim
HiddenFoods_Jan2019.krk2.norm.species = read.delim("HiddenFoods_Jan2019.krk2.rcf.
—abundance.species.norm2.final", header=T, fill=T, row.names=NULL, sep="\t")
HiddenFoods_May2019.krk2.norm.species = read.delim("HiddenFoods_May2019.krk2.rcf.
—abundance.species.norm2.final", header=T, fill=T, row.names=NULL, sep="\t")
Warinner2014.krk2.norm.species = read.delim("Warinner2014.krk2.rcf.abundance.species.
—norm2.final", header=T, fill=T, row.names=NULL, sep="\t")
Velsko_modern_calculus.krk2.norm.species = read.delim("Velsko_modern_calculus.krk2.
—rcf.abundance.species.norm2.final", header=T, fill=T, row.names=NULL, sep="\t")
Velsko_ancient_calculus_total.krk2.norm.species = read.delim("Velsko_ancient_calculus_
—total.krk2.rcf.abundance.species.norm2.final", header=T, £fill=T, row.names=NULL,
—sep="\t")

Plaque.krk2.norm.species = read.delim("Plaque.krk2.rcf.abundance.species.norm2.final",
— header=T, fill=T, row.names=NULL, sep="\t")

Mann2018.krk2.norm.species = read.delim("Mann2018.krk2.rcf.abundance.species.norm2.
—~final", header=T, fill=T, row.names=NULL, sep="\t")

Baboons_Ozga.krk2.norm.species = read.delim("Baboons_Ozga.krk2.rcf.abundance.species.
—norm2.final", header=T, £fill=T, row.names=NULL, sep="\t")
Weyrich2017.krk2.norm.species = read.delim("Weyrich2017.krk2.rcf.abundance.species.

—norm2.final", header=T, fill=T, row.names=NULL, sep="\t")
Baboons_Egypt_all.krk2.norm.species = read.delim("Baboons_Egypt_all.krk2.rcf.
—abundance.species.fltl0.teeth.env.norm2.final", header=T, £il11=T, row.names=NULL,
—sep="\t")

Baboons_Egypt_nofilter.krk2.norm.species = read.delim("Baboons_Egypt_nofilter.krk2.
—rcf.abundance.species.norm2.final", header=T, fill=T, row.names=NULL, sep="\t")
Baboons_Egypt_teeth.krk2.norm.species = read.delim("Baboons_Egypt_teeth.krk2.rcf.
—abundance.species.norm2.final", header=T, fill=T, row.names=NULL, sep="\t")

Skin.krk2.norm.species = read.delim("Skin.krk2.rcf.abundance.species.norm2.final",
—header=T, fill=T, row.names=NULL, sep="\t")

ObregonTito_gut.krk2.norm.species = read.delim("ObregonTito_gut.krk2.rcf.abundance.
—species.norm2.final", header=T, fill=T, row.names=NULL, sep="\t")
Soil.krk2.norm.species = read.delim("Soil.krk2.rcf.abundance.species.norm2.final",
—header=T, fill=T, row.names=NULL, sep="\t")

Chimps.krk2.norm.species = read.delim("Chimps_Ozga.krk2.rcf.abundance.species.norm2.
—~final", header=T, fill=T, row.names=NULL, sep="\t")
Brealey_animals.krk2.norm.species = read.delim("Brealey_animals.krk2.rcf.abundance.
—species.norm2.final", header=T, fill=T, row.names=NULL, sep="\t")
Brealey_animals.krk2.norm.species = Brealey_animals.krk2.norm.species[,-c(2:5,7,8)] _
— #remove Blanks from filtrated Brealey, Gblreg/flt, GbZreg/flt

Eisenhofer_ Japan_flt.krk2.norm.species = read.table("Eisenhofer Japan.krk2.rcf.
—abundance.species.norm2.final.flt", header=T, fill=T, row.names=NULL, sep="\t")
Eisenhofer_ Japan_flt.krk2.norm.species = Eisenhofer_Japan_flt.krk2.norm.species|, -
—~c(19,20)] #remove EBC-2 in FEisenhofer which has no classified species, and_

—~Details column.

30 Chapter 1. Contents

Paleogenomics Documentation, Release 0.1.0

1.8.1 Barplot
1.8.2 UPGMA

1.8.3 nMDS

Course overview

Metagenomics
kraken build
s Step 2 Step 3 dustmasker
k:zn:n Reads taxonomic Reads taxonomic kraken
assignation with assignation with krona

T~ Minikraken DB CustomkrakenDB

Reads Step 1
H Reads quality Fa&.‘th
pre-proceSSlng control and filtering ~ClipAndMerge
/
BWA
Reads Samtools Step 4 Qualimap
R Picard Alignment of reads MultiQC
mappin GATK to a reference 16V
ppIng . genome -
~J -
mapDamage
Samtools
Beftools
snpToolkit
///
|~
Phylogeny Step 7
Phylogenetic

e genindex

IQTree

i analysis

1.8. R session

31

Paleogenomics Documentation, Release 0.1.0

¢ modindex

e search

32

Chapter 1. Contents

	Contents
	List of Tools
	Quality filtering of reads
	Metagenomic screening of shotgun data
	Alignment of reads to a reference genome
	Variant calling and visualization
	Filtering, annotating and combining SNPs
	DO-IT-YOURSELF
	R session

